Introduction

Monte Carlo (MC) simulations [1] have been employed since the 1950s to determine
thermodynamic data for simple model systems as well as complex force fields
designed to reproduce the physical properties of specific compounds. Molecular
Dynamics (MD has benefited greatly from the parallel computing revolution and
many simulation engines [2-3] have added support for graphics processing units 1
powerful multi-core data processing devices. One MD engine i HOOMD T was even
written from scratch for optimal GPU performance [4]. To date, MC codes have only
been published for Ising lattice [5] and hard sphere simulations [6]. In this work, we
Introduce a fast, GPU-optimized code capable of simulations of a Lennard-Jones fluid
In the canonical (NVT) and Gibbs ensembles [7].

Methodology

A series of simulations were run in canonical and Gibbs ensembles. All of these
simulations utilized the ubiquitous Lennard-Jones potential [8]:
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Simulations were performed for both truncated and long -range corrected potentials.
These tall corrections utilize the assumption of a homogenous fluid and are defined

as follows: 0°G ) —*"tf. [(_) _(_) ]
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All simulations were run on a machine with an Intel®® Core™ i5-2500K CPU @
3.30GHz,8 GB of memory, and an NVIDIA®) GeForcéM 560 GPU (336 processing
cores, 850 MHz core clock,1 GB memory) by EVGA.
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Validation of the GPU (CUDA) Code

Vapor Phase Energy (NVT) [9]
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The volume move requires complete recalculation of all unigue particle pair-wise interactions.
When represented in two dimensions the problem of contiguous space becomes apparent -- a
formula is necessary to map threads to series of interactions. We accomplish this by using a

shift to create a contiguous region of unique interactions.
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GPU Accelerates Simulations in the Gibbs Ensemble
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GPU Delivers Larger Cutoff at Less Time Cost
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Conclusions

NV | D ICAmpsite Unified Device Architecture (CUDA) is a powerful
tool for scientific computing, providing a means to harness the power

of GPUs to perform numerically

Intensive tasks. We have

demonstrated the application of CUDA and GPUs to simulations In
two ensembles, which show a n b r eeavke pant of around 500
particles. The effectiveness of the GPU was shown to improve with
Increasing potential cutoff radius and system size. Gibbs ensemble
Monte Carlo appears to be particularly well suited to the GPU, as the
GPU provides a means to flatten the volume move, which scales as
O(N?).
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